26 research outputs found

    Conformational epitopes of myelin oligodendrocyte glycoprotein are targets of potentially pathogenic antibody responses in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myelin/oligodendrocyte glycoprotein (MOG) is a putative autoantigen in multiple sclerosis (MS). Establishing the pathological relevance and validity of anti-MOG antibodies as biomarkers has yielded conflicting reports mainly due to different MOG isoforms used in different studies. Because epitope specificity may be a key factor determining anti-MOG reactivity we aimed at identifying <it>a priori </it>immunodominant MOG epitopes by monoclonal antibodies (mAbs) and at assessing clinical relevance of these epitopes in MS.</p> <p>Methods</p> <p>Sera of 325 MS patients, 69 patients with clinically isolated syndrome and 164 healthy controls were assayed by quantitative, high-throughput ELISA for reactivity to 3 different MOG isoforms, and quantitative titers correlated with clinical characteristics. mAbs defined unique immunodominant epitopes distinct to each of the isoforms.</p> <p>Results</p> <p>In the majority of human samples anti-MOG levels were skewed towards low titers. However, in 8.2% of samples high-titer anti-MOG antibodies were identified. In contrast to anti-MOG reactivity observed in a mouse model of MS, in patients with MS these never reacted with ubiquitously exposed epitopes. Moreover, in patients with relapsing-remitting MS high-titer anti-MOG IgG correlated with disability (EDSS; Spearman r = 0.574; p = 0.025).</p> <p>Conclusions</p> <p>Thus high-titer reactivity likely represents high-affinity antibodies against pathologically relevant MOG epitopes, that are only present in a small proportion of patients with MS. Our study provides valuable information about requirements of anti-MOG reactivity for being regarded as a prognostic biomarker in a subtype of MS.</p

    Update on the Autoimmune Pathology of Multiple Sclerosis: B-Cells as Disease-Drivers and Therapeutic Targets

    No full text
    BackgroundCollectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics.SummaryWhile additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity.Clinical implicationsIn 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R

    In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses.

    No full text
    ObjectiveTo determine to what extent oligoclonal band (OCB) specificities are clonally interrelated and to what degree they are associated with corresponding B-cell responses in the peripheral blood (PB) of multiple sclerosis (MS) patients.MethodsMass-spectrometric proteomic analysis of isoelectric focused (IEF) cerebrospinal fluid (CSF) immunoglobulin G (IgG) was used in combination with next-generation deep-immune repertoire sequencing of PB and CSF IgG heavy chain variable regions from MS patients.ResultsWe find evidence for ongoing stimulation and maturation to antibody-expressing B cells to occur primarily inside the central nervous system (CNS) compartment. B cells participating in OCB production can also be identified in PB; these cells appear to migrate across the blood-brain barrier and may also undergo further antigen stimulation in the periphery. In individual patients, different bands comprising OCBs are clonally related.InterpretationOur data provide a high-resolution molecular analysis of OCBs and strongly support the concept that OCBs are not merely the terminal result of a targeted immune response in MS but represent a component of active B cell immunity that is dynamically supported on both sides of the blood-brain barrier
    corecore